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We study work fluctuation theorems for oscillators in non-Markovian heat baths. By calculating the work
distribution function for a harmonic oscillator with motion described by the generalized Langevin equation, the
Jarzynski equality �JE�, transient fluctuation theorem �TFT�, and Crooks’ theorem �CT� are shown to be exact.
In addition to this derivation, numerical simulations of anharmonic oscillators indicate that the validity of these
nonequilibrium theorems does not depend on the memory of the bath. We find that the JE and the CT are valid
under many oscillator potentials and driving forces, whereas the TFT is not applicable when the driving force
is asymmetric in time and the potential is asymmetric in position.
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I. INTRODUCTION

Fluctuation theorems �FTs�, which describe properties of
the distribution of various nonequilibrium quantities, such as
work and entropy, have been developed over the past decade
�1–7�. Unlike most other relations in nonequilibrium statisti-
cal mechanics, remarkably, the FTs are applicable to systems
driven arbitrarily far from equilibrium.

In particular, consider a classical finite-sized system in
contact with a heat bath at temperature T and driven by some
generalized force � �e.g., volume, magnetic field�. In equi-
librium, the phase space distribution of the system is de-
scribed by a well-defined statistical mechanical ensemble.
The free energy F can, in principle, be calculated and is a
function of these parameters, i.e., F=F�T ,��. At some time t,
say t=0, � is varied via a fixed path ��t� to a later time t
=�. If this process is carried out reversibly, the work done W
is simply the free energy difference �F=F�T ,���−F�T ,�0�.
More generically, the process is irreversible and the second
law gives the well-known inequality

W � �F . �1�

An ensemble of such processes would yield the work
probability distribution P�W�. The finite width of P�W� is
due to two stochastic sources: �1� The system configuration
when the force is first initiated at t=0 is drawn from the
equilibrium ensemble and �2� the path the system travels �in
phase space� during the driving process is not deterministic
due to the coupling with the heat bath. We study P�W� in the
light of three closely related theorems described below, the
Jarzynski equality �JE� �4�, the transient fluctuation theorem
�TFT� �2,6,7�, and Crooks’ theorem �CT� �6,7�.

The powerful nonequilibrium work relation due to
Jarzynksi �4� allows one to exactly obtain equilibrium infor-
mation �the free energy difference� from measurements of
nonequilibrium processes. The JE states

�e−�W� = e−��F, �2�

where � is the inverse temperature �with Boltzmann’s con-
stant set to unity� and the average is over the distribution
function P�W� described above. The equality allows for the
computation of �F even when the driving process is not

adiabatic. This is to be compared with the inequality of Eq.
�1�. The JE has been shown for Hamiltonian systems �4� and
Markovian stochastic systems �5–7�.

Fluctuation theorems have been found for a wide class of
systems and various nonequilibrium quantities, including
work, heat, and entropy production. They are also generally
divided into steady state �3� and transient theorems �2,6,7�.
In this paper, we restrict our discussion to the transient fluc-
tuation theorem for the mechanical work done. The TFT re-
lates the ratio of probability distributions for the production
of positive work to the production of negative work,

P�+ W�
P�− W�

= e+�W. �3�

Similar to the JE, the TFT has been derived in driven deter-
ministic systems �2� and Markovian stochastic systems
�6–10�.

Crooks �6� connected the JE and the TFT by using a re-
lation very similar to Eq. �3�, which we refer to as the
Crooks’ theorem,

PF�+ Wdiss�
PR�− Wdiss�

= e+�Wdiss, �4�

where Wdiss=W−�F is the dissipated work, PF�+Wdiss� is the
probability distribution for Wdiss as described in the above
scenario, and PR�−Wdiss� is the probability distribution for
negative dissipated work done in a time-reversed driving
process. The similarity between Eqs. �3� and �4� is evident
and the two theorems are, in fact, equivalent for a large class
of systems. Clearly, W and Wdiss are the same when the driv-
ing force is such that �F=0. However, under certain asym-
metries in the potential and the driving force, differences
between the TFT and CT arise �11�. In Sec. IV, we show one
such scenario.

Unlike some other nonequilibrium quantities �e.g., heat
and entropy�, the classical mechanical work is an easily de-
fined quantity, W=�0

�dt f�t�ẋ�t�. The original formulation of
the JE �4�, however, relies on the generalized work WJ

=−�0
�dt ḟ�t�x�t�. As discussed in Refs. �7,16�, these two differ
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by the boundary conditions f���x���− f�0�x�0� and care must
be taken in defining the work in the fluctuation theorems.

The �space and time� extensiveness of W �or WJ� demon-
strates that second law “violations” become exponentially
unlikely for thermodynamic systems; these violations only
become observably probable for microscopic systems. Be-
yond purely theoretical interest, the recent investigations of
molecular motors and nanomechanical devices demonstrate
the practical importance for understanding these universal
nonequilibrium theorems. Technological accessibility of mi-
croscopic systems has opened up experimental study and
verification of the above theorems in various systems
�12–14�. We seek to understand the range of applicability of
these theorems in terms of the memory of the noise in the
baths.

In this paper, we focus on the JE, TFT, and CT for single
harmonic and anharmonic oscillators. Using second-order
Langevin dynamics of a single oscillator, the work fluctua-
tion theorems have been studied in Ref. �15�. The work dis-
tribution function in harmonic polymer chains has been stud-
ied by Dhar �16�. Both of these papers and the derivations of
the FTs for stochastic systems �6–10� utilize Markovian dy-
namics.

We study the FTs for oscillators coupled to non-
Markovian baths. This extension is motivated by the fact that
the �-function noise correlation in standard Langevin dynam-
ics does not take into account that, when a system moves
through the bath fluid, it disturbs the fluid in its local vicinity,
thereby affecting the friction term �17�. Furthermore, micro-
scopic models of classical �18� or quantum mechanical �19�
heat baths show that the noise correlations are finite. Lastly,
measurable noise correlations have been observed in optical
trap �20� and spectroscopy �21� experiments. These experi-
ments and theory indicate that noise correlations do exist,
albeit the correlation time may be immeasurably small.
Through analytic expressions for the harmonic oscillator and
numerical simulations of anharmonic oscillators, we demon-
strate that the memory of the bath does not affect the validity
of the FTs.

In the next section, we briefly describe the model and the
generalized Langevin dynamics. Section III contains explicit
derivations of the JE, TFT, and CT in the harmonic limit
where analytic calculations are possible. We show numerical
results for the nonlinear oscillators in Sec. IV and summarize
our results in the last section.

II. THE MODEL

We model the system as a unit-mass particle in a one-
dimensional potential with dynamics governed by the gener-
alized Langevin equation �22�,

ẍ�t� = −
dV�x�

dx
+ f�t� − �

0

t

dt���t − t��ẋ�t�� + 	�t� , �5�

where V�x� is a conservative oscillator potential and f�t� is
an externally determined time-dependent driving force. The
	�t� and ��t� terms represent Gaussian noise and damping,
respectively, and must be related through the fluctuation-
dissipation theorem,

�	�t�� = 0, �	�t�	�t��� = T��t − t�� , �6�

where T is the temperature of the bath. In the white Gaussian
noise limit, ��t� is proportional to a Dirac � function and the
more familiar “Markovian” Langevin equation is recovered.
We mention that the damping is even in time, ��t�=��−t�, an
important property to be used in the next section.

We use a potential V�x� of the form

V�x� =

o

2x2

2
+

k3x3

3
+

k4x4

4
, �7�

which can represent a truncation of the Taylor expansion of
some complicated potential. We restrict ourselves to bounded
potentials. x can represent the spatial position, an angular
variable as in Ref. �15�, or a generalized coordinate. From
this potential and the driving force f�t� conjugate to x, the
Hamiltonian H is clearly H�t�= ẋ2 /2+V�x�− f�t�x. If the
force is time independent, the system would eventually reach
equilibrium and the free energy F can be simply calculated
by F=−T ln�Z�, where Z is the partition function. In this
ensemble, we recall that the Jarzynski work WJ is not gener-
ally equal to the real mechanical work W �7,16�. In the next
section, we derive the work distribution function for the har-
monic oscillator, i.e., k3=k4=0.

III. THE HARMONIC OSCILLATOR

At low temperatures, many potentials can be well ap-
proximated by the harmonic potential. Harmonic oscillators
also have the practical virtue that a formal solution to Eq. �5�
exists. We use this formal solution to derive the distribution
functions for the Jarzynski generalized work WJ and the real
mechanical work W. The work distribution functions are then
used to verify the JE and the TFT. �The TFT and CT are
equivalent for the harmonic oscillator.� The analytic expres-
sions in this section are analogous to the expressions from
Ref. �16� with three main differences. The primary difference
is that the noise is colored here. Second, we use the full
second-order Langevin equation instead of taking the
strongly overdamped limit. The last difference is that we
only study single harmonic oscillators instead of harmonic
chains. Our results should generalize to chains, which are
more applicable to polymer stretching experiments �13�,
though we do not discuss this generalization further.

Equilibrium quantities are easily evaluated for the har-
monic oscillator. Under constant driving, the free energy is

F�T, f� = −
f2

2
o
2 − T ln

2�T


o
. �8�

Since only the free energy difference �F appears in the JE,
only the first term on the right-hand side is relevant. In this
equilibrium ensemble, the averages for the initial position xo
and velocity vo and their variances are

�xo� = f/
o
2, �xo

2 = T/
o
2,

�vo� = 0, �vo

2 = T , �9�

where �A
2 = �A2�− �A�2 for any quantity A.
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The formal solution to Eq. �5� for a harmonic potential is
�for t
0�

x�t� = H�t�xo + G�t�vo + �
0

t

dt�G�t − t���f�t�� + 	�t��� ,

�10�

where H�t� and G�t� are the homogeneous solutions with

properties H�0�= Ġ�0�=1 and Ḣ�0�=G�0�=0. For t�0 we
define H�t�=H�−t� and G�t�=−G�−t�. The stochastic terms
are xo, vo, and 	. Using the definition of WJ �W�, we see that
WJ �W� is proportional to x �ẋ� and is, therefore, a linear
combination of the stochastic terms. Thus, in the harmonic
limit, WJ is Gaussian distributed and it is sufficient to calcu-
late the mean �WJ� and variance �J

2. Obviously, W is Gauss-
ian as well and its distribution function is

P�W� =
1

	2��2
e−�W − �W��2/2�2

. �11�

For such Gaussian processes, the TFT is satisfied if �W�
=��2 /2 and the JE is satisfied if �WJ�=�F+��2 /2.

In order to compare the means and variances of the work
distributions, we first derive identities for the Green’s func-
tions H�t� and G�t� in Eq. �10�. The Laplace transform of Eq.
�5� is

s2x̃�s� − sxo − vo + �̃�s��sx̃�s� − xo� + 
o
2x̃�s� = 0, �12�

where x̃�s�=�0
�dt x�t�e−st is the standard definition of the

Laplace transform. The Green’s functions H�t� and G�t� must
also satisfy equations analogous to Eq. �12� and simplify due
to their initial conditions. Solving these algebraic expres-
sions gives

H̃�s� =
�̃ + s

s2 + s�̃ + 
o
2 ,

G̃�s� =
1

s2 + s�̃ + 
o
2 . �13�

Some manipulations and the inverse transform reveal identi-
ties between the two Green’s functions in Laplace and real
space,

sH̃�s� = 1 − 
o
2G̃�s� ,

sG̃�s� = H̃�s� − �̃�s�G̃�s� ,

Ḣ�t� = − 
o
2G�t� ,

Ġ�t� = H�t� − �
0

t

dt���t − t��G�t�� . �14�

For white noise, where H�t� and G�t� are well known, we
confirm that Eqs. �14� are correct.

We plug Eq. �10� into the definition of the Jarzynski work
�for a time ��,

WJ = − �
0

�

dt ḟ�t��H�t�xo + G�t�vo� − �
0

�

dt�
0

t

dt� ḟ�t�G�t − t��

��f�t�� + 	�t��� . �15�

With the use of the equilibrium averages, we find the mean
of the Jarzynski work,

�WJ� = − �
0

�

dt ḟ�t�H�t�f�0�/
o
2 − �

0

�

dt�
0

t

dt� ḟ�t�

�G�t − t��f�t�� . �16�

We can reexpress Eq. �16� for later comparison with �J
2 by

integrating by parts and using the identity for Ḣ�t� in Eq.
�14�,

�WJ� = �F + �
0

�

dt�
0

t

dt� ḟ�t�H�t − t�� ḟ�t��/
o
2. �17�

We find the variance of WJ by using the oscillator equi-
librium averages and the fluctuation-dissipation theorem,

��J
2 = 
�

0

�

dt ḟ�t�H�t��2 1


o
2 + 
�

0

�

dt ḟ�t�G�t��2

+ �
0

�

dt1�
0

t1

dt1��
0

�

dt2�
0

t2

dt2���t1� − t2��

� ḟ�t1�G�t1 − t1�� ḟ�t2�G�t2 − t2�� . �18�

In order to simplify this expression to compare with Eq. �17�,
we must reduce the quadruple integral to a more manageable
double integral. We define

I�t1,t2� = �
0

t1

dt1��
0

t2

dt2�G�t1 − t1��G�t2 − t2����t1� − t2�� .

�19�

The integrals of I�t1 , t2� can be evaluated by first doing a

double Laplace transform, Ĩ�s1 ,s2�=�0
�dt1�0

�dt2e−s1t1e−s2t2

�I�t1 , t2�. This double transform can be done by using the
even symmetry of ��t�. We separate and define the two sym-
metric parts of ��t� using the step function,

��t� = �+�t� + �−�t� = ��t���t� + ��− t���− t� . �20�

Incidentally, the Laplace transforms of the two separate parts
are equal to the Laplace transform of ��t�, �̃+�s�= �̃−�s�
= �̃�s�. We use this property, the convolution theorem, and
Eqs. �14� to find the double transform

Ĩ�s1,s2� =
H̃�s1� + H̃�s2�


o
2�s1 + s2�

−
H̃�s1�H̃�s2�


o
2 − G̃�s1�G̃�s2� .

�21�

The inverse transform can easily be done, giving

I�t1,t2� =
H�t1 − t2�


o
2 −

H�t1�H�t2�

o

2 − G�t1�G�t2� . �22�

Finally, we plug this expression back into Eq. �18�,
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��J
2 = �

0

�

dt�
0

�

dt� ḟ�t�H�t − t�� ḟ�t��/
o
2 = 2�WJ� − 2�F .

�23�

The last equality proves the Jarzynski equality for harmonic
oscillators, even when 	�t� is not � correlated. As in Mar-
kovian stochastic derivations of the TFT �6,7,16�, the gener-
alized work WJ does not satisfy the TFT; however, Wdiss
=WJ−�F does.

A simpler derivation of the JE follows if we assume time-
translation invariance of various correlation functions. The
definition of �J

2 contains the autocorrelation of �x�t�=x�t�
− �x�t��,

�J
2 = �

0

�

dt�
0

�

dt� ḟ�t� ḟ�t����x�t��x�t��� . �24�

We evaluate the correlation in the angular brackets by using
time-translation invariance and the formal solution of �x�t�
=H�t��xo+G�t�vo+�0

t dt�G�t− t��	�t��,

��x�t��x�0�� = H�t�/��
o
2� . �25�

Plugging this back into Eq. �24�, we recover the result from
the previous derivation Eq. �23� and the JE is easily seen.

A similar analysis is done for the real mechanical work,

W = �
0

�

dt f�t��Ḣ�t�xo + Ġ�t�vo� + �
0

�

dt�
0

t

dt�Ġ�t − t��

��f�t�� + 	�t��� . �26�

The average work is obtained using the equilibrium aver-
ages,

�W� = �
0

�

dt f�t�Ḣ�t�f�0�/
o
2 + �

0

�

dt�
0

t

dt�f�t�Ġ�t − t��f�t�� .

�27�

The Laplace transform manipulations and the symmetric
property of ��t� can be used to find an expression for the
variance of the work �2. However, we only show the simpler
derivation, analogous to Eq. �24�,

�2 = �
0

�

dt�
0

�

dt�f�t�f�t����ẋ�t��ẋ�t��� , �28�

where �ẋ�t�= ẋ�t�− �ẋ�t��. The quantity in angular brackets
can be calculated by using the formal solution for the veloc-
ity, i.e., the time derivative of Eq. �10�. Time-translation in-
variance is again assumed and the velocity autocorrelation is
easily calculated,

��ẋ�t��ẋ�0�� = Ġ�t�/� . �29�

We use this result in Eq. �28� and find

��2 = �
0

�

dt�
0

�

dt�f�t�Ġ�t − t��f�t�� = 2�W� . �30�

The last equality is from a comparison with Eq. �27� and is
valid when f�0�=0. Under this condition, we thus prove the

TFT for the probability distribution for the real mechanical
work.

Equations �23� and �30� are the main results of this sec-
tion. Simulations of a driven harmonic oscillator in a non-
Markovian bath confirm these derivations; for all driving
forces and bath conditions simulated, the JE and TFT are true
for the harmonic oscillator. Figure 1 shows the results of
these simulations. Details of the numerics and simulation
results for anharmonic oscillators are given in the next sec-
tion.

IV. ANHARMONIC OSCILLATORS

For anharmonic oscillators, finding simple expressions for
P�W� and P�WJ� is, in general, not possible; W and WJ are
not linear combinations of the Gaussian stochastic quantities,
therefore their distributions are not Gaussian. In this section,
we numerically measure the work distribution functions for
oscillators with the potential of Eq. �7� when k3 ,k4�0.

Random uncorrelated Gaussian numbers are commonly
numerically generated and used in standard integration algo-
rithms for Langevin equations of motion. An efficient Verlet-
like integrator for second-order white noise Langevin equa-
tions is given in Ref. �23�. We modify this algorithm in order
to simulate generalized Langevin systems with exponentially
correlated noise. The damping kernel has the form

��t� = e−��t�. �31�

Exponentially correlated noise can be effectively intro-
duced by using white noise in the equation of motion for an

1
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FIG. 1. �Color online� Inset: Work probability distribution P�W�
for a harmonic oscillator under a driving force f�t�=sin��t /�� and a
bath with exponentially correlated noise. Simulation details are
given in Sec. IV. The distribution is a Gaussian with a positive
mean, but with significant amplitudes for negative W. Work prob-
ability distributions for other driving forces are qualitatively similar,
as is P�Wdiss�. Main figure: Log-lin plot of P�W� / P�−W� versus W.
The different points are for a variety of driving forces and their
excellent agreement with the exponential confirms the validity of
the TFT.
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auxiliary variable z, in addition to the position x and velocity
v. The coupled differential equations are

dx/dt = v ,

dv/dt = − dV�x�/dx + f�t� + z ,

dz/dt = − �z − v + � . �32�

� represents Gaussian white noise with moments

���t�� = 0, ���t���t��� = 2T��t − t�� . �33�

It can be shown that the equations of motion Eqs. �32� are
equivalent to Eq. �5� with exponentially correlated noise Eq.
�31�. In all simulations, T=�=
o

2=1, though we have veri-
fied that our results are qualitatively the same with different
temperatures and damping constants. We use a step size h
with h=0.01 in all simulations shown. We have checked that
our results do not change with smaller step sizes.

Work distributions are approximated by histograms of
O�106� measurements of the work done �W and WJ� over a
time �. Between each measurement, we allow the oscillator
to equilibrate by integrating Eqs. �32� for O�105� steps with
f�t�=0. No differences in the distributions are seen for dif-
ferent histogram bin sizes and longer equilibration times.

We use a sawtooth driving force of the form

f�t� = 
t/to, 0 � t � to,

�− t + ��/�� − to� , to � t � � .
� �34�

Under this driving force, the equilibrium configurations at t
=0 and t=� are identical, i.e., �F=0 and W=WJ. In the �
→0 limit, the work distribution is trivially peaked at W=0
because there is no time for work to be done. P�W� is simi-
larly peaked at zero in the �→� limit because the system is
driven adiabatically from an equilibrium state back to the
same equilibrium state. Our numerical simulations are in ac-
cord with these physical limits. The figures show simulation
results with �=10, which is intermediate between these two
limits. �No qualitative differences in terms of the JE, TFT,
and CT exist with different �.� Lastly, f�0�=0, which is a
necessary condition for the validity of the TFT for the har-
monic oscillator detailed in the last section and Fig. 1.

By changing to, we can alter the symmetry of f�t�; the
force is symmetric in time only when to=0.5�. We imple-
ment this symmetric driving and two asymmetric sawtooth
forces with to=0.25�, 0.75� in our simulations. As mentioned
in the Introduction, there is a subtle difference in the TFT
and the CT with the latter using a time-reversed process in
the denominator of the ratio of probabilities. For the sym-
metric sawtooth force, forward and reverse driving must be
equivalent and no differences exist between the TFT and the
CT. Our asymmetric sawtooth forces are complementary in
that the time-reverse driving of one force is equivalent to the
time-forward driving of the other. In other words, in terms of
this sawtooth force, the TFT is

Pto
�+ W�

Pto
�− W�

= e+�W, �35�

whereas the CT is

Pto
�+ W�

P�−to
�− W�

= e+�W. �36�

�Ps�W� is the work distribution corresponding to a sawtooth
potential with a break at time t=s.�

We first simulate an anharmonic spring with a unit quartic
anharmonicity �i.e., k3=0, k4=1�. Figure 2 displays the re-
sults of these simulations. Aside from not being Gaussian,
the probability distributions have similar properties to the
work distribution of the harmonic oscillator: the means are
all positive and there is a very substantial probability of mea-
suring negative work. Furthermore, the two complementary
asymmetric driving forces give the same work probability
functions. From Eqs. �35� and �36�, it is clear that, in this
case, the TFT and the CT are equivalent. The main plot in
Fig. 2 displays this equality as well as the validity of the
theorems.

When a cubic nonlinearity is included �k3=k4=1�, the
even symmetry of the potential is broken. Figure 3 displays
results for these nonsymmetric oscillators. The top plot is
analogous to the inset of Fig. 2 and shows the probability
distributions for the three different sawtooth driving forces.
From this figure, it is clear that all three distributions are

1
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to=0.75τ

FIG. 2. �Color online� Inset: Work probability distributions for
oscillators with quartic anharmonicities under sawtooth driving
with to /�=0.25, 0.5, and 0.75. These distributions have positive
means, but also substantial weight on the negative region of W.
P0.25��W�= P0.75��W�, indicating that the asymmetry in the driving
force does not alter the work distribution functions; thus the ratios
in the definition of the TFT and the CT, Eqs. �35� and �36�, must
also be equal. The main figure confirms this equality and shows that
the TFT and the CT are valid for the quartic oscillator.
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different and the ratio in the TFT Eq. �35� is not equivalent to
the ratio in the CT Eq. �36�.

The difference between the TFT and the CT is clearly
shown by the bottom panel of Fig. 3. In fact, the CT is valid
under all sawtooth driving forces, whereas the TFT is valid
only in a symmetric driving force. For oscillator potentials
that are not symmetric in x, i.e., V�x��V�−x�, and the driv-
ing force is asymmetric in time about � /2, as expected, the
TFT is not valid. Very similar results to these have been seen
in simulations with Markovian baths by Baiesi et al. �11�. In
fact, the bottom panel of Fig. 3 contains the same qualitative
features as Fig. 2 of Ref. �11�.

For our example the validity of the JE follows from the
CT. Independently, we have also measured the average ex-
ponential of the work and find �e−�W�=1 within � four deci-
mal places for both symmetric and asymmetric oscillators.
Because �F=0, this indicates the Jarzynski equality Eq. �2�
is most likely valid for a large class of oscillator potentials,
even with exponentially correlated noise.

When a sinusoidal force of the form f�t�=sin�n�t /��,
where n is an odd integer, is used, the simulation results are

qualitatively the same as with the symmetric sawtooth force.
Obviously, this is because the period of the sinusoidal force
gives a symmetric �about � /2� driving process. We also
simulate linear driving which takes the system to a different
equilibrium configuration in the adiabatic limit. Though �F
�0 with linear driving, we find that the JE and the CT are
still valid, but the TFT fails. This last result is not surprising
because the linear driving force has many qualitative simi-
larities with asymmetric sawtooth driving forces.

The above results are unchanged when colored noise is
replaced by white noise. The work by Baiesi et al. �11�
clearly shows these results. The white noise results are to be
expected due to the numerous analytical derivations of these
nonequilibrium theorems �4,6–10� for Markovian baths. Our
simulation results shown in this section indicate that the CT
and the JE are also valid for non-Markovian baths.

V. SUMMARY

We have derived nonequilibrium work fluctuation theo-
rems for the classical harmonic oscillator connected to a gen-
eralized Langevin bath by studying the work distribution
functions. Both W and WJ are Gaussian variables. We derive
the TFT for the real work and the JE by using exact relations
between �W� and �2 and �WJ� and �J

2. To our knowledge,
these are the first rigorous derivations of the nonequilbrium
work fluctuation theorems for a system described by an ar-
bitrary damping kernel of the generalized Langevin equation.

We also numerically measure the work distribution func-
tions for anharmonic oscillators in Langevin baths with ex-
ponentially correlated noise. Our numerical simulations indi-
cate that the JE extends to particles in a variety of oscillator
potentials and driving forces. They also show that the sym-
metries of the potential and the driving force account for
differences between the TFT and the CT. Crooks’ theorem is
valid for all potentials and driving forces simulated, whereas
the TFT is not valid when the oscillator potential is not even
in x and the driving force is not symmetric in t �about � /2�.
The strong agreement between our simulation results and the
nonequilibrium theorems �CT and JE� provides motivation
for a derivation of the theorems for anharmonic oscillators in
non-Markovian baths.

These results are important due to the existence of noise
correlations in any real heat bath. Experiments of systems
with pronounced non-Markovian behavior, such as in the
colloidal system studied in Ref. �11�, are necessary to verify
these results. Due to the importance of the JE and FTs, more
work is required to understand their full range of applicabil-
ity. Experimentally, the JE is a powerful tool to measure
equilibrium free energy differences due to the fact that any
real driving is done irreversibly. Interesting and open ques-
tions still exist on the ramifications of the nonequilibrium
fluctuation theorems and the second-law-“violating” events
for molecular engines and microscopic thermodynamics.
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FIG. 3. �Color online� Top panel: Work probability distributions
for particles in an asymmetric potential under sawtooth driving with
to /�=0.25, 0.5, and 0.75. Due to the lack of symmetry in the po-
tential, P0.25��W�� P0.75��W�. Bottom panel: Ratios from Eqs. �35�
and �36� versus W on a log-lin plot. The data sets that agree with the
exponential indicate that the CT is valid even for asymmetric po-
tentials. The other sets indicate that the TFT fails for these poten-
tials under general driving forces.
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